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One invertible and one unitary operator can be used to reproduce the effect of aq-
deformed commutator of annihilation and creation operators. The original annihilation
and creation operators are mapped into new operators, not conjugate to each other,
whose standard commutator equals the identity plus a correction proportional to the
original number operator. The consistency condition for the existence of this new set
of operators is derived, by exploiting the Stone theorem on 1-parameter unitary groups.
The above scheme leads to modified “equations of motion” which do not preserve the
properties of the original first-order set for annihilation and creation operators. Their
relation with commutation relations is also studied.

KEY WORDS: harmonic oscillator; deformation quantization; 1-parameter unitary
groups.

1. INTRODUCTION

Several efforts have been devoted in the literature to the attempt of building
quantum mechanics as a kind of deformed classical mechanics. The mathematical
foundations and the physical applications of such a program are well described, for
example in Sternheimer (1998) and in the many references given therein. Within
that framework, quantization emerges as an autonomous theory based on a defor-
mation of the composition law of classical observables, not on a radical change in
the nature of the observables. One then gets a more general approach which coin-
cides with the conventional operatorial approach in known applications whenever
a Weyl map can be defined, and leads to an improved conventional quantization
in field theory (Sternheimer, 1998).

In particular, this has led to consider the socalledq-deformed commutator
of annihilation and creation operators of an harmonic oscillator, i.e. (Arik and
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Coon, 1976)

[a, a†]q ≡ aa† − qa†a = I , (1.1)

I being the identity operator. The aim of this study was to provide an alternative
interpretation of Eq. (1.1) and discuss its implications, putting instead the emphasis
on maps which do not preserve the canonical commutation relations. In other
words, since noncanonical maps are an important topic in quantum mechanics, we
propose to exploit their properties to avoid having to deform the composition law
of observables. The following sections show under which conditions this is indeed
possible, and some of its implications.

2. A NEW LOOK AT DEFORMED COMMUTATORS

We first point out that Eq. (1.1) can be reexpressed in the form

aa† − a†a = I + (q − 1)a†a. (2.1)

The left-hand side of Eq. (2.1) is the application toa and a† of the standard
definition of commutator of a pair of linear operatorsA andB:

[ A, B] ≡ AB− B A, (2.2)

where, at this stage, we are leaving aside the technical problems resulting from the
possible occurrence of unbounded operators (Prugovecki, 1981; Reed and Simon,
1972).

The picture we have in mind is therefore as follows: Suppose we start from
the operatorsa anda† satisfying the canonical commutation relations

[a, a†] = I . (2.3)

Can we mapa anda† into new operatorsA and B whose standard commutator
satisfies instead the condition suggested by Eq. (2.1), i.e.

[ A, B] = I + (q − 1)N, (2.4)

having defined, as usual,N ≡ a†a (the standard number operator)? In other words,
after rewriting Eq. (1.1) in the equivalent form (2.1), we reinterpretthe left-hand
side onlyas the standard commutator of new operators, here denoted byA and
B. By doing so, we are aiming to prove that the standard commutator structure
in quantum mechanics can be preserved, while the mathematics of 1-parameter
unitary groups makes it possible to achieve a transition from Eq. (2.3) to Eq. (2.4)
(see also comments in Section 6).

For this purpose, we consider a pair of invertible operatorsS andT chosen
in such a way thatT is unitary and the original commutation relation is no longer
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preserved. This means that we define

A ≡ SaT−1, (2.5)

B ≡ T a†S−1, (2.6)

which implies that

[ A, B] = Saa†S−1− T a†aT−1, (2.7)

and eventually, from Eq. (2.3) and the definition ofN,

[ A, B] = I + SN S−1− T N T−1. (2.8)

Note thatB is not even the formal adjoint ofA, sinceS is not required to be unitary
(which will be shown to be sufficient to realize our noncanonical map). Since we
require that the commutator (2.8) should coincide with the commutator (2.4), we
obtain the equation

SN S−1 = T N T−1+ (q − 1)N. (2.9)

As said already in Section 1, we are dealing with maps which do not preserve
the canonical commutation relations. The nonlinear map

a→
√

[n]

n
a

provides an example of such a transformation. Our commutation relations (2.4)
are not the same as those of (1.1), for which

[n] = qn − 1

(q − 1)

but correspond instead to

[n] = n+ (q − 1)
n(n− 1)

2

which is a polynomial deformation.

3. APPLICATION OF THE STONE THEOREM

Having obtained the fundamental Eq. (2.9) we point out that, sinceT is taken
to be unitary, we can exploit the Stone theorem (Stone, 1932), according to which
to every weakly continuous, 1-parameter familyU (s), s ∈ R of unitary operators
on a Hilbert spaceH, obeying

U (s1+ s2) = U (s1)U (s2), s1, s2 ∈ R, (3.1)
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there corresponds a unique self-adjoint operatorA such that (Prugovecki, 1981;
Reed and Simon, 1972)

U (s) = eis A, (3.2)

for all s ∈ R. More precisely, the Stone theorem states that, ifU (s), s ∈ (−∞,∞),
is a family of unitary transformations with the group property (3.1) and such that
(U (s) f, g) is a measurable function ofs for arbitrary f andg in an abstract Hilbert
space, then there exists a unique self-adjoint operatorA such thatU (s) = eis A.

In our problem, we therefore consider a real parameteru and a self-adjoint
operatorB such that

T = T(u) = eiuB u ∈ R. (3.3)

We exploit Eq. (3.3) after choosingB = P for convenience (see comments below),
i.e., the momentum operator canonically conjugate to the position operatorQ. In
h = 1 units, the annihilation and creation operators read

a ≡ 1√
2

(Q+ i P), (3.4)

a† ≡ 1√
2

(Q− i P), (3.5)

and hence the number operator can be written in the form

N ≡ a†a = 1

2
(Q2+ P2− I ). (3.6)

If

T(u) ≡ eiu P, (3.7)

we can exploit the identities

e−iu P Q eiu P = Q− uI, (3.8)

eiu P P = P eiu P, (3.9)

to obtain

T QT−1 = Q+ uI, (3.10)

T P = PT, (3.11)

and hence

T N T−1 = 1

2
T QT−1T QT−1+ 1

2
T PT−1T PT−1− I

2

= 1

2
(Q+ uI )2+ 1

2
P2− I

2
= N + uQ+ u2

2
I . (3.12)
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It is now clear that the choiceB = P in (3.3), although not mandatory, is a matter
of convenience, since it makes possible to obtain a manageable expression for
T N T−1. This formula, resulting from the particular choice (3.7), can be inserted
into Eq. (2.9) which now becomes an equation for the unknown operatorS, i.e.

SN S−1 = q N+ uQ+ u2

2
I , (3.13a)

or also, more conveniently,

S(Q2+ P2)S−1 = q(Q2+ P2)+ 2uQ+ (u2− (q − 1))I . (3.13b)

Now we consider the complete orthonormal set of harmonic oscillator states, de-
noted by|n〉 with the abstract Dirac notation. On acting on both sides of (3.13b)
with S from the right-hand side one finds

S(2N + I ) = q(2N + I )S+ 2uQS+ (u2− (q − 1))S. (3.14)

Since the task of findingS is equivalent to the evaluation of all its matrix elements,
we point out that this equation leads to an equation for matrix elements ofSupon
exploiting the resolution of the identity

I =
∞∑

n=0

|n〉〈n|, (3.15)

when we writeS= SI, and defining

Sm,n ≡ 〈m|S|n〉. (3.16)

SinceN|m〉 = m|m〉, while Q = 1√
2
(a+ a†), one finds, after evaluation of the bra

〈m| on both sides of Eq. (3.14), the equation

[((2n+ 1)− q(2m+ 1)− (u2− (q − 1)))Sm,n

− u
√

2(
√

mSm−1,n +
√

m+ 1Sm+1,n)] = 0, (3.17)

where the standard propertiesa|m〉 = √m|m− 1〉 anda†|m〉 = √m+ 1|m+ 1〉
have been used. Equation (3.17) implies that

(2(n−mq)− u2)Sm,n = u
√

2(
√

mSm−1,n +
√

m+ 1Sm+1,n). (3.18)

For given values ofq andu, this set of equations should be studied for all values of
n, m= 0, 1,. . . ,∞. If mq+ u2

2 is not an integer, this infinite set yields the matrix
elementSm,n as a linear combination ofSm−1,n andSm+1,n, i.e.

Sm,n = AmnSm−1,n + BmnSm+1,n, (3.19)
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where

Amn = u
√

2m

(2(n−mq)− u2)
Bmn = u

√
2(m+ 1)

(2(n−mq)− u2)
. (3.20)

In agreement with our assumptions, these equations show that the operatorS is
not unitary, since it fails to satisfy the basic conditionSS† = I .

To prove the possibility of realizingS as an invertible operator, we find it
more convenient to revert to the operator equation (3.14), here written in the form

S(Q2+ P2) = q(Q2+ P2)S+ 2uQS+ βS, (3.21)

having definedβ ≡ u2− (q − 1). Here the left- and right-hand sides are operators
acting on square-integrable stationary statesψ(x). In one spatial dimension,Q
can be realized as the operator of multiplication byx, and P as the operator
−i d/dx, if the coordinate representation is chosen. IfS is taken to be the operator
of multiplication by an invertible functionf , i.e.

S : ψ → f (x)ψ(x)

with f : x→ f (x) invertible, we have to check that the resulting differential
equation forψ(x) admits square-integrable solutions. Indeed, the choices outlined
imply that Eq. (3.21) leads to the following differential equation forψ(x):[

d2

dx2
+ ϕ1(x)

d

dx
+ ϕ2(x)

]
ψ(x) = 0, (3.22)

where

ϕ1(x) ≡ 2q

(q − 1)

f ′

f
, (3.23)

ϕ2(x) ≡ −x2+ −q f ′′ + 2ux f + β f

(1− q) f
. (3.24)

To ensure that the origin is a regular singular point of Eq. (3.22) we have to choose
f in such a way thatϕ1 has, at most, a first-order pole atx = 0, andϕ2 has at
most a second-order pole atx = 0. For example, such conditions are fulfilled if
f : x→ x, because thenϕ1 has a first-order pole at 0, whileϕ2 has no poles at all
therein, being equal to

−x2+ 2ux+ β
(1− q)

.

The resulting equation reads[
d2

dx2
+ 2q

(q − 1)

1

x

d

dx
+
(
−x2+ 2ux+ β

(1− q)

)]
ψ(x) = 0, (3.25)
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and for it the point at infinity is not Fuchsian, as it happens for the ordinary
harmonic oscillator in quantum mechanics.

To sum up, we have shown that Eq. (3.21) is compatible with at least one
choice of invertible operatorSfor which the stationary states are square-integrable
on the whole real line (the potential term in Eq. (3.25) being dominated at largex
by an even function which diverges at infinity). We have not considered the expo-
nential map as a candidate forf since its inverse, the logarithm, is not defined for
negativex, while the ordinary oscillator is studied for all values ofx.

4. MODIFIED EQUATIONS OF MOTION

In the investigation of deformed harmonic oscillators it is rather important
to check that the equations of motion satisfied by the annihilation and creation
operators defined in (3.4) and (3.5), i.e.(

d

dt
+ i

)
a = 0, (4.1)(

d

dt
− i

)
a† = 0, (4.2)

are preserved (Man’koet al., 1996a). Here, however, we have mapped (a, a†)
into operators (A, B) whose standard commutator satisfies instead Eq. (2.4). It is
therefore not obvious that the equations of motion (4.1) and (4.2) are preserved.
Indeed, by allowing for a time dependence ofT andSone finds, by virtue of (2.5)
and (4.1), that

d A

dt
= ṠaT† + SȧT† + SaṪ† = ṠaT† + S(aṪ† − iaT†). (4.3)

This leads to (
d

dt
+ i

)
A = ṠaT† + SaṪ†. (4.4)

Now we would like to re-express the right-hand side of Eq. (4.4) in such a way
thata is replaced byA. For this purpose, we use Eq. (2.5), the unitarity ofT and
the invertibility of S to find

aT† = S−1A, (4.5)

Sa= AT, (4.6)

and hence the operatorA obeys the first-order equation(
d

dt
+ i

)
A = ṠS−1A+ ATṪ†. (4.7)
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An analogous procedure shows that

d B

dt
= Ṫ a†S−1+ T

(
ia†S−1+ a†

dS−1

dt

)
, (4.8)

and hence(
d

dt
− i

)
B = Ṫ a†S−1+ T a†

dS−1

dt
= BS

dS−1

dt
+ Ṫ T†B, (4.9)

where we have used the identities

T a† = BS, (4.10)

a†S−1 = T†B. (4.11)

5. EQUATIONS OF MOTION VS. COMMUTATORS

In ordinary quantum mechanics one knows, thanks to the work of Wigner
(1950) and Man’koet al. (1996b), that the equations of motion do not determine
uniquely the commutation relations one relies upon. In our case, this amounts to
asking whether, reversing the previous logical order, Eqs. (4.7) and (4.9) are more
fundamental than the commutator (2.4), and to which extent a solution of Eqs. (4.7)
and (4.9) determines uniquely the commutator ofA with B.

Indeed, on defining the first-order operatorsϕ ≡ d
dt + i andγ ≡ d

dt − i , and
considering the commutators

[ A, TṪ†] ≡ C1, (5.1)[
B, S

dS−1

dt

]
≡ C2, (5.2)

Eqs. (4.7) and (4.9) can be written in the form

(ϕ − ṠS−1− TṪ†)A = C1, (5.3)(
γ − S

dS−1

dt
− Ṫ T†

)
B = C2. (5.4)

The resulting analysis, far from being of purely formal value, goes at the very heart
of the problem: one can solve forA andB upon inverting the operators in round
brackets in Eqs. (5.3) and (5.4), and this makes it necessary to find their Green
functions. But there may be more than one Green function, depending on which
initial condition is chosen. Assuming that such a choice has been made, one can
write

A = (ϕ − ṠS−1− TṪ†)−1C1, (5.5)
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B =
(
γ − S

dS−1

dt
− Ṫ T†

)−1

C2, (5.6)

and their commutator is not obviously equal to (see (2.4))

I + (q − 1)a†a = I + (q − 1)T†B AT

where we have inverted Eqs. (2.5) and (2.6) definingA andB to find

a = S−1AT, a† = T†BS.

6. CONCLUDING REMARKS

Starting from Eqs. (1.1) and (2.1) we have pointed out that deformed com-
mutators can be “replaced” by a map of the standard commutation relations (2.3)
into the modified form (2.4). As far as we can see, this is by no means equiva-
lent to deformation quantization. Our effort to build such a map reflects instead
the desire to preserve the standard commutator structure, while using some basic
mathematical tools to prove that the map of Eq. (2.3) into Eq. (2.4) is feasible.
This leads to the introduction of two different invertible operatorsS andT with
T unitary, subject to the consistency condition (2.9). From the point of view of
ideas and techniques, this is the original contribution of our paper. Section 3 proves
that a careful use of the Stone theorem makes it possible to fulfill such a condition
with S invertible, while Sections 4 and 5 have studied how the equations of mo-
tion are modified, and what sort of correspondence exists between them and the
commutator (2.4).

Our framework can be made broader by studying the case when neitherS
nor T is unitary (see (2.5) and (2.6)), but we see no (obvious) advantage in doing
so. Our investigation is of interest for the mathematical foundations of quan-
tum mechanics becauseit shows under which conditions it is possible to avoid
deforming the composition law of classical observables(cf. Bayenet al., 1978;
Biedenharn, 1989; Bozejkoet al., 1997; Jorgensen and Werner, 1994; MacFarlane,
1989; Sternheimer, 1998; Sun and Fu, 1989; Werner, 1995). Further develop-
ments can also be expected, because the link between the superoperator formalism
(Los, 1978) and the maps defined by our Eqs. (2.5) and (2.6) deserves a thorough
investigation.
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